목록해석할 수 있는 기계학습/5. 모델 불특정성 방법 (11)
늦깎이 공대생의 인공지능 연구실
개별 조건부 기대치(ICE)는 특성값이 변경될 때 인스턴스(Instance)의 예측값이 어떻게 변하는지 보여주는 인스턴스당 하나의 선그래프를 나타냅니다. 특성값의 평균 효과에 대한 부분의존도는 특정 인스턴스에 초점을 맞추지 않고 전체 평균에 초점을 맞추기 때문에 전반적인 방법입니다. 개별 데이터 인스턴스에 대한 PDP와 같은 것을 개별 조건부 기대치(ICE)라고 합니다(Goldstein et al. 2017). ICE는 각 인스턴스에 대한 예측 의존도를 개별적으로 시각화하여, 부분의존도에서 전체적으로 하나의 선그래프에 비해 인스턴스당 하나의 선그래프가 됩다. PDP는 ICE의 선 평균입니다. 선(그리고 하나의 인스턴스)에 대한 값은 다른 모든 특성값을 동일하게 유지함으로써 계산할 수 있으며, 특성값을 그..
부분의존도(PDP 또는 PD plot)는 기계학습 모델의 예측 결과에 대한 하나 또는 두개의 특성들이 갖는 한계 효과(Marginal effect)를 보여줍니다(J. H. Friedman 2001). 부분의존도는 목표값과 특성값 사이의 관계가 선형인지, 변화가 없는지, 혹은 복잡한지를 나타냅니다. 예를 들어, 선형 회귀 모델을 적용할 때, 부분의존도는 선형 관계를 보여줍니다. 회귀에 대한 부분의존함수는 다음과 같은 식으로 나타냅니다. $$\hat{f}_{x_S}(x_S)=E_{x_C}\left[\hat{f}(x_S,x_C)\right]=\int\hat{f}(x_S,x_C)d\mathbb{P}(x_C)$$ \(x_S\)는 부분의존함수를 나타내기 위한 특성값이고, \(x_C\)는 기계학습 모델 \(\hat{..
기계학습 모델(=모델 불특정 해석 방법)에서 설명을 구분하는 것은 몇 가지 이점이 있습니다.(Ribeiro, Singh, and Guestrin 2016). 모델별 특정법보다 모델불특정법의 큰 장점은 유연성입니다. 기계학습 개발자들은 해석 방법이 어떤 모델에 적용할 수 있을 때 그들이 좋아하는 기계학습 모델을 자유롭게 사용할 수 있습니다. 그래픽 또는 사용자 인터페이스와 같은 기계학습 모델의 해석에 기초하는 것은 기본 기계학습 모델과 독립적이기도 합니다. 일반적으로 한 가지뿐 아니라 여러 가지 유형의 기계학습 모델을 평가하여 과제를 해결하는데, 해석력의 측면에서 모델을 비교할 때 어떤 종류의 모델에도 동일한 방법을 사용할 수 있기 때문에 모델불특정법 설명으로 하기가 더 쉽습니다. 모델 불특정 해석 방법의..